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Abstract Fusarium head blight is one of the most

important wheat diseases causing grain yield and quality

losses as well as mycotoxin contamination all over the

world. Since Fusarium cannot be reliably controlled with

fungicides, breeding has become a favorable tool to

decrease the infection severity. In most cases, selection for

Fusarium resistance is done by artificial infection in the

field. However, there is a risk in preferring late heading

genotypes, because heading of wheat is negatively corre-

lated to head blight severity. Because an indirect selection

for late maturity is not intended, we considered a statistical

approach to avoid this problem. In this paper, we propose a

mixed model to analyze extensive Fusarium head blight

rating in resistance breeding experiments of wheat. The

objective of the analysis was to select for Fusarium resis-

tance, while at the same time ensuring that late heading

genotypes, which show less head blight over the shorter

vegetation period, are not preferred. Thus, selection was to

be done such that genetic variability for heading date was

retained. Therefore, the statistical model contained a

covariate to adjust for differences in the heading date. The

use of covariate adjustment is an easily handled alternative

to a bivariate analysis. Covariate adjustment will in prac-

tice often work almost equally well as bivariate analysis.

Any statistical software with powerful mixed model anal-

ysis tools can be used for this type of analysis. We propose

an ad hoc method to obtain heritability estimates and a

form of LSD (least significance difference) as a measure of

accuracy on the basis of the proposed model and under

special consideration of the experimental design. The ad

hoc LSD was used as a rough measure to judge rankings of

genotypic means (BLUPs). Friedman’s super smoother was

used to compare smoothed rank estimates for adjusted and

unadjusted genotypes against increasing smoothed heading

dates. Traits were transformed to meet the model

assumptions, especially homogeneity of errors and nor-

mality, and back-transformation of means and standard

errors was conducted by using the delta method.

Introduction

Fusarium head blight (FHB), primarily caused by Fusar-

ium graminearum and F. culmorum, is one of the most

important wheat diseases leading to grain yield and quality

losses as well as mycotoxin contamination. FHB can be

only partially controlled by fungicide spraying whereas the

timing and application are critical (McMullen et al. 1997).

The best treatments may reduce FHB severity up to 50%

associated with the reduction of damaged kernels, but

mycotoxin contamination forms a constant threat to the

food chain. Planting resistant cultivars is an alternative

method to control the disease. Phenotypic selection of

superior progeny in the field is a common resistance

breeding procedure. It is well documented that environ-

mental conditions, directly after inoculation, are likely to

have a high influence on the occurrence and severity of

FHB (Miedaner et al. 2001). The time of maximal
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susceptibility is mid-flowering. However, flowering time

among large progeny usually varies and the length of

flowering period depends on the origin of the material and

the differences between the crossing parents. Especially

when using exotic resistance donors, the span of flowering

might become quite wide. In early generations, flowering

cannot be taken into account because of the high segre-

gational variation within plots. This may lead to

misinterpretation of the results because in many cases

genotypes with early heading dates will show more

symptoms than genotypes with later heading dates, leading

to a correlation between FHB severity and flowering time

(r = -0.19, Buerstmayr et al. 2000) or heading date

(r = -0.43, Schmolke et al. 2005). Because mid-flowering

is difficult to assess, the heading date may be used as an

indicator of the developmental stage of the plant. Some

authors try to avoid this problem by inoculating each

genotype individually at its respective flowering date (e.g.,

Buerstmayr et al. 2000). This technique is laborious and

cost intensive, especially when selection is conducted in

large populations. Additionally, this method results in

several inoculation dates and, consequently, different

weather conditions at the time of inoculation. Instead, we

propose an approach to inoculate and score all genotypes

several times at the same date and adjust statistically for

differences in heading date, when all genotypes are planted

simultaneously. With the same method, covariation

between FHB severity and plant height could also be

adjusted if necessary. The latter covariation often occurs in

experimental studies amounting to correlations of up to

r = -0.37 (Buerstmayr et al. 2000; Schmolke et al. 2005).

In experiments with exotic resistance donors, even a cor-

relation of r = -0.55 was reported in barley (Buerstmayr

et al. 2004).

As the heading date (HD) of wheat is (negatively) cor-

related with Fusarium head blight (FHB), a selection on the

basis of unadjusted average FHB rating will favor varieties

with a late heading date. It should be considered that the

FHB severity, heading date and plant height are in most

cases inherited by different quantitative trait loci (QTL,

e.g., Buerstmayr et al. 2003; Schmolke et al. 2005). Their

relationships are mainly based on developmental or epi-

demiological conditions that should not bias the selection

decision of the breeders. We will discuss an experiment

designed to breed for FHB-resistant genotypes by selection

across several environments. Selection is done on the basis

of ranking of estimated means, which are adjusted for an

average heading date. This ensures that favoring of late

heading varieties does not take place in a regular way.

Essentially, selection is based on the genotypic deviation

from a regression on heading date, thus ensuring that for

each flowering time, genotypes with the best resistance are

retained. The approach could be used to compare

genotypes between all earliness classes, but this could

result in the use of unplausible predicted combinations

between earliness and resistance. Therefore, in practical

applications where this kind of unplausibility may occur,

we recommend that only genotypes in similar earliness

(i.e., covariate) classes are compared.

The methods proposed in this paper can be easily

adapted to other selection experiments. This is an impor-

tant issue when the methods are to be used broadly in

practical selection work, which usually involves large plant

populations and often needs to be performed under time

pressure. Traits of interesting properties can be correlated

with other quantitative traits. An analysis of genotypes on

the basis of the ‘‘main’’ trait may result in selection of

varieties from a less desirable subpopulation (e.g., late

heading resistant varieties) of the secondary trait. This

undesirable side-effect can be avoided by using the method

described here.

This paper is organized as follows. In the following

section, we will introduce the genetical architecture and

randomization structure of a large breeding experiment.

The second part of ‘‘Materials and methods’’ presents the

statistical methodology used to analyze this experiment.

‘‘Results’’ discusses the analysis of the experiment and is

followed by the discussion of the methods introduced.

Materials and methods

Field trials

We will discuss a series of field experiments conducted

in four environments in the north and south of Germany.

All crops were artificially inoculated by spraying

conidia suspensions of F. culmorum at a density of

500,000 conidia ml-1 by a machine-driven field sprayer.

Inoculation was performed three to five times for all geno-

types of an experiment, according to their length of flowering

period. For more details see Miedaner et al. (2006). Rating

was done on a plot basis by visually estimating the per-

centage of diseased spikelets (0–100%) at three to four times

during pathogenesis and calculating an average FHB rating.

A large population of about 1,200 winter wheat geno-

types was tested. The genotypes were derived from a

recurrent selection program based on a double cross [RIL1

(G16-92/Hussar)/Brando//RIL2 (Dream/Lynx)/LP235.1]

and consisted of three subpopulations. One subpopulation

(R) consisted of 50 unselected progenies. The second

subpopulation (P) underwent one cycle of phenotypic

selection and comprised about 1,000 genotypes. The third

subpopulation (M) of 113 genotypes resulted from marker-

assisted selection (MAS) based on three diallelic QTL. The

three QTL gave rise to eight marker classes (groups).
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Marker class M1 has all three tested QTL combined, M2–

M4 have two QTL, M5–M7 have one and M8 has none.

For the first two subpopulations (R and P) there was no

such subdivision, so each of these may be regarded as a

single group. Thus, overall, there were ten genetically

different groups of genotypes of common origin.

The randomization of genotypes was hierarchical in two

steps. In the first step, the 1,200 genotypes were subdivided

into 6 sets of similar size. The first set of 200 genotypes

contained subpopulations R and M and standard varieties.

Subpopulation P, which comprised 1,000 genotypes, was

split into five sets of 200. Each set was randomized sepa-

rately according to an a-lattice with block size ten

(Patterson and Williams 1976; Paterson and Patterson

1984). The first set had four replicates, while the other five

sets had two replicates. A replicate was randomized as a

main plot in a split-plot design. The total of 14

(1 9 4 + 5 9 2) main plots resulting from the six a-lat-

tices were completely randomized. The different a-lattices

were connected by four common standards (the four par-

ents of the original double cross) planted five times per

replication. The design is not a standard one, but variations

of it are often used in practical breeding applications

(Piepho et al. 2006b). In our case one reason for the choice

of this design was that unequal replication was desired for

the subpopulations and that the hierarchical randomization

was easy to implement using standard procedures. It is

stressed, here, however, that powerful software is available

to randomize very complex breeding trials according to

various experimental designs (Whitaker et al. 2002).

The main purpose of this experiment was to compare the

eight class means for the marker classes of subpopulation

M among one another and with the other two subpopula-

tion means (R and P). A further objective was to obtain

good point estimates of the genetic values of individual

genotypes within subpopulations for selection.

The mixed model approach discussed in the following

section can accommodate the unbalance, which results

from heterogeneous replication of genotypes under the full

hierarchical lattice design.

Statistical methods

Overview of methods

Standard analyses of breeding experiments usually yield

least significant differences (LSD) and heritabilities. We

will discuss methods to calculate these measures for mixed

models. The methods are illustrated using examples from

resistance breeding, where the main aim is the selection of

FHB-resistant genotypes. Nonetheless, all methods dis-

cussed here can be generalized easily to other situations.

Statistical model

Following Piepho et al. (2003), we partition the model into

block and treatment components. The experimental design

is included in the model for statistical analysis.

The statistical model is presented for lattice/hierarchical

lattice design and is generalized easily to other situations,

as done exemplarily in the second part of the example. The

model is

yijkmn ¼ lþ d0 � gi þ a0 � xikm þ sj þ lk þ d0 � kik

þ rkm þ bkmn þ eijkmn ð1Þ

yijkmn observation of (transformed) trait

l general mean

sj fixed effect for standards, coding standard and non-

standard genotypes (j = 1, …, s for s - 1

standards and one level for non-standards)

d0 dummy with 1 for non-standards and 0 for

standards

gi random genotypes effect with variance r2
GT;

standard genotypes are blocked out by regression

on the dummy d0

a0 regression coefficient

xikm covariate for heading dates

lk random effect of location k, with variance r2
L;

(k = 1, …, l)

kik random interaction for genotypes 9 location with

variance r2
GT�L; standard genotypes are blocked

out by regression on the dummy d0

rkm random effect for replication/large (incomplete)

block effect for hierarchical lattice m in location k

with variance r2
B

bkmn random incomplete block effect (in location k and

replicate/large block m) with variance r2
IB

eijkmn random error, �N 0; r2
e

� �
:

The purpose of the dummy variable d0 is to block out

standards from the random part of the model (Piepho et al.

2006b). The random effects have expectation zero and the

subscripts on the variance components are described as

follows: GT, genotype; GT 9 L, genotype in locations; B,

replication block; IB, incomplete block; e, random error.

For an RCBD, rkm is the complete block effect and bkmn

is dropped.

Delta method for back-transformation of standard errors

in original scale

The genotype means and pairwise comparisons of genotype

means with standard errors are back-transformed to the

original scale using the delta method, also referred to as
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method of statistical differentials, based on Taylor approx-

imation (cf. Hinkelmann and Kempthorne 1994; Stuart and

Ord 1994 and formulas in ‘‘Appendix’’). For clarity, how-

ever, the graphic presentation of means with LSD is done on

the transformed scale and shown in combination with results

on a back-transformed scale. It is stressed that especially in

the case of non-linear transformations like the logit trans-

formation, the back-transformation of standard errors of

pairwise comparisons of means by delta method may result

in upwardly biased standard errors on the original scale and

should be handled with care.

Ad hoc least significant difference (LSD)

Breeders have used LSD in standard analysis over many

years as a measure to decide if genotypic values differ

significantly (Miedaner et al. 2004). On this basis, a ranking

of genotypic values is done and the LSD serves as a simple

measure of accuracy of genotypic effect estimates and

provides a ‘‘rule of thumb’’ for comparison of genotypes.

The LSD is based on an analysis with fixed genotypic

effects, with estimation by the best linear unbiased esti-

mation (BLUE). However, it is emphasized, that the best

linear unbiased predictors (BLUPs) are optimized for

ranking and selection (Piepho and Möhring 2006). In gen-

eral, it is reasonable to make inferences for BLUP in much

the same way as for BLUE (Kackar and Harville 1984). In

either case, it must be realized, however, that the null

hypothesis of a test of equality of genotypic effects can

usually be ruled out on a priori grounds. Thus, for two

treatment means A and B, say, it is usually known that

A 6¼ B: Clearly, when genotypic effects are assumed to

come from a normal distribution, the probability of two

genotypes being exactly equal is zero. The real question is

whether A [ B or B [ A (Tukey 1991). When a test rejects

H0: A = B, there is a basis for deciding among these two

alternatives, otherwise the data are inconclusive (Hsu 1996).

For a large number of genotypes, conducting all pair-

wise tests is neither practical nor useful, mainly due to the

multiplicity problem involved (Hochberg and Tamhane

1987). The LSD may simply be taken as a measure of

accuracy to aid selection decisions in borderline cases. For

BLUP we propose ad hoc LSD computed as two times the

average standard error of differences. Let A be the vari-

ance–covariance matrix of least square means or of

BLUPs. Then the average variance of genotype differences

may be computed as (Bueno and Gilmour 2003):

�v ¼ t � traceðAÞ � 10A1

tðt � 1Þ=2
ð2Þ

where t is the number of treatments. We also apply this

formula for calculation of the ad hoc heritability described

below. The ad hoc LSD is presented on the transformed

scale where normality and homoscedasticity are assumed

to apply.

Heritability in unbalanced designs with covariates

Heritability is used in breeding experiments as a measure to

assess the power of the selection process across locations

and years. Broad-sense heritability should be calculated on

the scale where normality applies, i.e., if the data is

transformed to fulfill the assumptions, heritability should

be calculated on the transformed scale. This ensures that

standard formula such as the selection gain equation can be

applied.

A conventional block design with r blocks that are

replicated at l locations has a heritability of:

h2 ¼ r2
GT

r2
GT þ r2

GT�L

�
lþ r2

e

�
ðl� rÞ

ð3Þ

with r2
GT; r

2
GT�L; r

2
e ; l and r are defined as in (1). However,

this formula includes insufficient information about the

randomization scheme if used in more complex designs

like lattice designs and if we include covariates.

Until recently, no formal method has been developed

to include other randomization structures adequately into

the calculation of heritabilities, but some such procedures

have been suggested recently (Oakey et al. 2006; Piepho

and Möhring 2007; Cullis et al. 2006). We propose an ad

hoc method to calculate heritabilities for mixed models

with covariates and complex experimental designs. The

method is based on the fact that the difference of

denominator and numerator in the usual equation for h2 in

(3) equals half the squared standard error of a difference

of two genotype means based on a mixed model with

fixed genotype effects.

Consider a randomized complete block design (RCBD),

replicated at l locations, with r blocks and t fixed genotypes

(GT). The model (without covariate) is given as:

yijkm ¼ lþ ci þ sj þ lk þ d0 � kik þ bkm þ eijkm: ð4Þ

Effects are defined as before, but genotype effects ci are

taken as fixed. Then the heritability is calculated as in (3).

The variance of differences of genotype means, divided by

two, is exactly equal to

Varðĉi � ĉjÞ=2 ¼ r2
GT�L

�
lþ r2

e

�
ðl� kÞ;

ði; j 2 f1; . . .; tg; i 6¼ jÞ:

Therefore, the heritability can be expressed as

h2 ¼ r2
GT

r2
GT þ Varðĉi � ĉjÞ=2

:

Our models are unbalanced, because we use covariates in a

lattice design with (or without) standards and a complex
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randomization and genetic structure. Nonetheless, we may

use the average of Varðĉi � ĉjÞ=2 in equivalent models to

define an ad hoc measure of heritability for mixed model

(1) with covariate and a block or (hierarchical) lattice

design with random genotypes. Varðĉi � ĉjÞ=2 is calculated

as mean of the squared standard error of differences of least

squares means of (fixed) genotypes. Our approach differs

from the recently proposed by Oakey et al. (2006) and

Cullis et al. (2006), who define heritability measures based

on Varðĉi � ĉjÞ=2 for BLUP.

Comparison of genotype ranking with and without

adjustment for large experiments

Friedman and Stuetzle (1981, 1982) propose a local aver-

aging smoother (running lines smoother), called Super

Smoother, to combine a graphical model fit with a data-

dependent automated choice of appropriate (and variable)

spans by cross validation. The Super Smoother shows good

properties for highly variable scatter plots (Friedman and

Silverman 1989) and is used in the example to account for

high variability of ranks of genotypes over heading dates. It

produces smoothed rank estimates for adjusted and unad-

justed genotypes against increasing smoothed heading

dates.

Results

Genotypic analysis. Percent values for FHB were logit-

transformed by logit(FHB/100) = log[FHB/100/(1 -

FHB/100)]. The formula of back-transformation of means

and average standard errors (sea) is given in ‘‘Appendix’’.

We provide a graphical presentation of means on the

transformed and original scale.

The ad hoc LSD of genotype comparisons is calculated

as LSD = 0.3. Ad hoc heritability on the basis of geno-

typic information is calculated as h2 = 0.90. Both

measures are calculated on the transformed (logit) scale.

Table 1 gives the variance components for the random

effects, which are all significant. The F tests for standards

and the covariate are significant (P values not shown). A

test for heterogeneity of regression slopes was not

significant.

Figure 1 compares the smoothed ranks of genotype

means per increasing smoothed average heading date for

the adjusted and unadjusted approach. It shows distinctly

that adjustment results in genotype ranks per heading date,

which decrease for early heading genotypes and increase

for late heading genotypes. Figure 1 shows exactly the

tendency that was observed in the estimated genotypic

means of the adjusted and unadjusted approach (the two

sets of 1,200 genotype means and their ranks are not

shown): nearly all ranks of adjusted genotypes of early

heading varieties had smaller ranks than the unadjusted

genotypes, and equivalently higher ranks for nearly all late

heading genotypes were observed.

A histogram in Fig. 2 gives an impression of the vari-

ability of adjusted genotype means on the transformed and

original scale. The ad hoc LSD is calculated on the trans-

formed scale and the limits of the histogram classes are

back-transformed in the original scale. The ad hoc LSD of

0.5 is quite high. It is easily checked that, starting with

ratings of 5% FHB, comparison-wise significance for

genotype means results in differences of around 3% for

small FHB ratings and up to 13% for large ratings (with a

maximum for ratings around 50%). Spearman’s rank

Table 1 Variance components of Fusarium head blight (FHB) rating

(0–100%) of 1,000 winter wheat genotypes inoculated with Fusarium
culmorum across four locations in hierarchical lattice experiment

(experiment a)

Covariance parameters Estimates

loc 0.028

loc 9 b 0.00012

loc 9 b 9 b2 0.000021***

gt 9 s2 0.231***

loc 9 gt 9 s2 0.029***

Residual 0.1844

*** P value \ 0.0001

Fig. 1 Smoothed ranks of means of 1,000 winter wheat genotypes

per increasing average heading date (HD, days after January 1)

inoculated with Fusarium culmorum across four locations (genotypic

analysis). Smoothing of ranks of genotypic FHB means per HD by

cross validation with Friedman’s Supersmoother (Friedman and

Silverman 1989)
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correlation coefficient between genotype means and head-

ing date was reduced from -0.38 to -0.22 by the

adjustment.

Analysis of groups of genotypes. As described in ‘‘Field

trials’’, the genotypes originate from three subpopulations

(R, M and P cf. ‘‘Field trials’’) and standards. The standards

are modeled as levels of a fixed factor. In addition, stan-

dards are assigned to a common level (0) of the grouping

factor for the classes of genotypes and are blocked out by

dummy coding from the covariance structure of the mixed

model (Piepho et al. 2006a).

The other levels of the grouping factor for the com-

parison of classes of genotypes consist of ten distinct

groups of genotypes from the three subpopulations,

because the interest lays in comparing eight marker classes

with each other and to compare the best marker class with

phenotypic selected (P) and unselected population (R).

Therefore, we analyze the variation between these ten

classes of genotypes and genotypic variation within the

classes of genotypes. This analysis requires a different

covariance structure for the mixed model. The fixed part of

the model contains the HD and the standard factor. In the

random part of the model, the genotype effect and the

genotype 9 location interaction are substituted by the

group effect, an interaction between group 9 genotype,

interactions between location 9 group and between

location 9 group 9 genotype.

Table 2 gives the variance components for the random

effects. The Wald F tests for fixed covariate HD are sig-

nificant in the discussed examples (test statistics not

shown). The average standard error for comparisons

between groups (i.e., differences of group means) is

calculated as sea = 2.82. Heritability is calculated as

h2 = 0.75 and this ad hoc heritability is now based on the

variance between groups on the logit scale as described

above.

Figure 3 compares the covariate-adjusted and unad-

justed means (BLUP) for ten classes, giving the

transformed and original scale. The ad hoc LSD in the

original scale is given as 0.3, the range of means is much

smaller than in other examples (not shown) and the

adjustment is not very pronounced. The reason for this is

Fig. 2 Distribution of adjusted means of 1,000 winter wheat

genotypes for Fusarium head blight (FHB) rating (0–100%) inocu-

lated with Fusarium culmorum across four locations (genotypic

analysis) on the transformed and original scale. Ad hoc LSD is

calculated in the transformed scale (Transf) and the limits of the

histogram classes are back-transformed in the original scale (Orig)

Table 2 Variance components of Fusarium head blight (FHB) rating

(0–100%) of ten classes of winter wheat genotypes inoculated with

Fusarium culmorum across four locations analyzed within and

between groups of genotypes in hierarchical lattice design (example

b)

Variance components Estimated variance

loc 0.0285

loc 9 b 0.000085

loc 9 b 9 b2 0.000021***

group 9 s2 0.0025

loc 9 group 9 s2 0.0000046

group 9 gt 9 s2 0.1722***

loc 9 group 9 gt 9 s2 0.0005***

Residual 0.2014

Effects and model: cf. Table 1

*** P value \ 0.001

Fig. 3 Comparison of means (best linear unbiased predictors) of

Fusarium head blight (FHB) rating (0–100%) with and without

adjustment for heading date (ranks in brackets behind class means)

and ad hoc LSD for ten classes of winter wheat genotypes inoculated

with Fusarium culmorum across four locations (analysis of groups of

genotypes). Means and ad hoc LSD are presented in transformed scale

(Transf) and original scale (Orig) to enable a rough back-transfor-

mation of genotype means
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the large variation of genotypes within the investigated

groups of genotypes and lack of extremely susceptible

genotypes. As expected, the adjusted and unadjusted means

(BLUPs) follow a similar pattern. However, the adjustment

for heading date does not have a large effect on such large

groups of genotypes. The reason for this is that the

observed average heading dates per class are close to the

overall average heading date of the full data set [range of

class means (156.5; 158.5), overall mean: 156.9, check

ranks of heading dates in Fig. 3, in brackets behind the

group names]. Note that the classes contain between 144

and 8,000 observations. Smaller differences in heading

date are typical when testing adapted genotypes only.

However, four of five marker genotype classes with the

smallest heading date (ranks 1–5) are adjusted in the

expected direction. Spearman’s rank correlation for the

group means and heading date for the analysis with and

without covariate is calculated as rs = 0.79 (n = 11,

P = 0.0037).

Discussion

In this paper, we have assumed independent homoscedastic

main effects and genotype–environment interaction effects,

corresponding to the compound symmetry model for

genetic correlation across environments. This model is

restrictive, in that it assumes homogeneous variance and

covariances. We are aware that heterogeneous models may

result in a better selection result (cf. Kelly et al. 2007),

especially if the genotype 9 environment interaction is

large. In our case, the interaction variance was rather

smaller than that of the genotypic main effect, so gross

differences in selection results are not expected. The

analysis for this paper was done as part of a cooperation

project in SAS (SAS Institute Inc., 2004) and major

resource problems were encountered for all checked

covariance structures except the homogenous compound

symmetry model. To evaluate whether this model would

result in a major bias, we fitted a factor-analytic model with

one factor (Piepho 1998a; Smith et al. 2005) in SAMM

(Butler et al. 2003) and found that similar variance esti-

mates did not differ much, even if the AIC indicated a

worse fit (difference between AIC of both models was

quite high with approximately 200). However, two of four

factor loadings of this solution were estimated at the

boundary of the parameter space and the genotypic main

effect was dropped from the analysis (Heywood case,

cf. Mardia et al. 1988). Further higher dimensional models

than compound symmetry (heterogeneous compound

symmetry, heterogeneous variance, first-order autoregres-

sive, unstructured covariance model) were not fitted at all

by SAMM (mostly convergence problems and singulari-

ties, in a lesser degree than in SAS). Therefore, we decided

to use the compound symmetry model mainly to enable

prediction of main effects, which were of special interest in

the discussed application. Kuchel et al. (2006) used a

similar (homogeneous) model to calculate BLUPs for

heading scores.

Recently, independently from this work, Oakey et al.

(2006) presented a generalized heritability measure for

mixed models on the basis of contrasts of true and pre-

dicted genetic effects. Cullis et al. (2006) presented a

further generalized heritability measure dependent on the

average prediction error variance and the vector of genetic

variance parameters. Piepho and Möhring (2007) proposed

a simulation-based measure of heritability and related

quantities. A comparison of these measures of heritability

would be worthwile.

Smith et al. (2001) propose an alternative to LSDs for

crop variety evaluation trials. On the basis of the correla-

tion between the true variety effects and those predicted

from the mixed model analysis (Cullis et al. 2000), they

calculate the probability that a variety is truly greater if its

BLUP of yield is greater than that of a standard. Similar

suggestions have been made for fixed effects models

(Eskridge and Mumm 1992; Piepho 1998b; Piepho and van

Eeuwijk 2002; Piepho and McCulloch 2004).

A bivariate model for average FHB and heading date

would be another way to analyze the Fusarium data,

resulting in BLUPs of both traits per genotype. One could

then select genotypes with relatively small FHB among

candidates with comparable heading date. Thus, selection

would be conditionally on genotypes with about the same

heading date. This is expected to yield similar results as the

analysis of covariance adjustment proposed in this paper.

One referee expressed concern that our covariate

adjustment to a common heading date essentially creates

genotypes that do not exist and that for this reason analysis

of covariance may not be appropriate. As stated above, for

such applications we recommend, therefore, to base the

selection of genotypes for further trials on comparisons

between genotypes in similar earliness classes. This avoids

the use of adjusted genotype means with unplausible

combinations of earliness and susceptibility that do not

exist in reality. For early heading genotypes, this will result

in similar choices as the bivariate model under similar

restrictions and will not result in selection of early heading

varieties as expected in the other approaches. While this

type of adjustment may not always be desirable in other

applications of covariance adjustment (Smith 1957), it

seems particularly suitable for the case at hand. The

objective of the breeding program was to select genotypes

with good resistance to Fusarium, while at the same time
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avoiding selection for late heading date. Resistance is a

complex trait. It may be assumed that resistance is gov-

erned by many genes, some of which are also related to

heading date. The purpose of our adjustment was to avoid

selection pressure on pleiotropic genes that influence both

heading date and resistance to Fusarium. A regression-

based correction of resistence traits for dependencies on

maturity is common practice in plant breeding applications

(Bormann et al. 2004; Bradshaw et al. 2004).

A pleiotropic (or at least partly overlapping) gene for

heading date and resistance to Fusarium was reported in

Schmolke et al. (2005). The covariance adjustment is

intended to block these genes from selection, such that

selection for resistance exerts pressure mainly on genes

determining resistance, but not heading date. By way of

analogy, consider composite interval mapping (CIM) for a

complex trait. CIM involves a covariate adjustment for

important QTL, when scanning for other putative QTL.

While the adjustment will create genotypes that do not

exist, it blocks out other QTL (analogous to genes gov-

erning heading date), thus allowing unbiased assessment of

a putative QTL (analogous to a resistance gene with no

pleiotropic effect for heading date). Other examples of

ANCOVA are found in animal trials, as e.g., the use of

weaning weight as covariate to analyses the average daily

gain in weight in pig feeding trials (Leibbrandt et al. 1975).

The present study allows further conclusions for resis-

tance screening. The biologically occurring correlation

between heading date and FHB severity preferring later

heading genotypes was already reduced by our multiple

inoculation system, i.e., three to four inoculation dates

during the whole flowering period within each experiment

(r = -0.38 in the discussed example). Even this rather low

correlation could be substantially reduced further by the

adjustment procedure described here. Figure 1 clearly

shows that the adjustment favors early heading genotypes

and penalizes later heading genotypes, thus preventing a

preferential selection of the latter. This is especially

important for selection of FHB-resistant progeny, because

an indirect selection for late maturity is not desired. Our

objective was to select for Fusarium resistance, while

retaining the variability in heading date. Note that for the

very early genotypes, the (smoothed) rank difference

between the adjusted and non-adjusted treatment is about

200.

In QTL studies on FHB resistance, linkage between

QTL for morphological traits, especially heading date and

plant height, and resistance QTL is often found across

environments (e.g., Schmolke et al. 2005). Applying the

proposed adjustment procedure could help clarify whether

these coincidences really have a genetic basis (linkage or

pleiotropy) or are caused by epidemiological or physio-

logical factors.

Appendix

Back-transformation of means and standard errors

A genotype mean �xi on the logit scale with standard error

sei is back-transformed in the original scale by

h�1ð�xiÞ ffi
expð�xiÞ

1þ expð�xiÞ½ � þ
1

2
� Varð�xiÞ

o2

o�xi
2

h�1ð�xiÞ
� �

and

Var(h�1ð�xiÞÞ ffi se2
i

o

o�xi
h�1ð�xiÞ

� �2

:

In case of differences of genotype means (i.e., pairwise

comparisons of genotype means) d ¼ �x1 � �x2 we back-

transformed the expectations and variances by

Eðh�1ðdÞÞ ¼ h�1ð�x1Þ � h�1ð�x2Þ

and

Var(h�1ðdÞÞ ¼ Varð�x1Þ
o

o�x1

h�1ð�x1Þ
� �2

þ Varð�x2Þ
o

o�x2

h�1ð�x2Þ
� �2

�2 Cov (�x1; �x2)

� o

o�x1

h�1ð�x1Þ
� �

o

o�x2

h�1ð�x2Þ
� �

:

Varð�x1Þ; Varð�x2Þ and Covð�x1; �x2Þ are the variances and

covariances of genotype means and covariances of geno-

type means on the transformed scale.

For back-transformation from the logit scale, the for-

mulas for first and second-order derivatives are:

o

o�x
h�1ð�xÞ ¼ expð�xÞ

½1þ expð�xÞ�2
and

o2

o�x2
h�1ð�xÞ ¼ expð�xÞ ð1� expð�xÞÞ

½1þ expð�xÞ�3
:
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Piepho HP, Büchse A, Truberg B (2006a) On the use of multiple

lattice designs and a-designs in plant breeding trials. Plant Breed

125:523–528

Piepho HP, Williams ER, Fleck M (2006b) A note on the analysis of

designed experiments with complex treatment structure. Hort-

Science 41:446–452

SAS Institute Inc (2004) SAS OnlineDoc� 9.1.2. SAS Institute Inc,

Cary

Schmolke M, Zimmermann G, Buerstmayr H, Schweizer G, Miedaner

T, Korzun V, Ebmeyer E, Hartl L (2005) Molecular mapping of

Fusarium head blight resistance in the winter wheat population

Dream/Lynx. Theor Appl Genet 111:747–756

Smith HF (1957) Interpretation of adjusted treatment means and

regressions in analysis of covariance. Biometrics 13:282–308

Smith AB, Cullis BR, Gilmour AR (2001) The analysis of crop

variety evaluation data in Australia. Aust N Z J Stat 43:129–145

Smith AB, Cullis BR, Thompson R (2005) The analysis of crop

cultivar breeding and evaluation trials: an overview of current

mixed model approaches. J Agric Sci Camb 143:449–462

Stuart A, Ord JK (1994) Kendall’s advanced theory of statistics, vol 1,

6th edn. Arnold Publishers, London

Tukey JW (1991) The philosophy of multiple comparisons. Stat Sci

6:100–116

Whitaker D, Williams ER, John JA (2002) CycDesigN: a package for

computer generation of experimental designs. CSIRO Forestry

and Forest Products, Canberra

Theor Appl Genet (2008) 117:65–73 73

123


	REML approach for adjusting the Fusarium head blight rating �to a phenological date in inoculated selection experiments of wheat
	Abstract
	Introduction
	Materials and methods
	Field trials
	Statistical methods
	Overview of methods
	Statistical model
	Delta method for back-transformation of standard errors �in original scale
	Ad hoc least significant difference (LSD)
	Heritability in unbalanced designs with covariates
	Comparison of genotype ranking with and without adjustment for large experiments


	Results
	Discussion
	Appendix
	Back-transformation of means and standard errors

	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


